Time: 3 hours

Max score: 100

Notations: G denotes a finite group throughout, and all representations are over the field of complex numbers.

Answer all questions.

- (1) (a) Define representation of a group.
 (b) Define irreducible representations.
 (c) Let φ : G → GL₂(ℂ) be a representation of G. Show that φ is irreducible if and only if there is no common eigenvector for the matrices φ_g with g ∈ G. (2+2+6)
- (2) State and prove Maschke's theorem for representations of a finite group. (15)
- (3) State and prove Schur's lemma.
- (4) (a) Define character χ_φ of a representation φ of a group G.
 (b) Define direct sum φ ⊕ ψ of two representations φ and ψ of G.
 - (c) Show that if $\rho = \phi \oplus \psi$ then $\chi_{\rho} = \chi_{\phi} + \chi_{\psi}$. (2+3+5)
- (5) (a) Define regular representation of a group G.
 (b) Find the character of the regular representation.
 (c) Show that if φ¹,..., φ^s denote a complete set of representatives of the equivalence classes of irreducible representations of G, then the multiplicity of φⁱ in the decomposition of the regular representation is deg(φⁱ), for all 1 ≤ i ≤ s. (4+8+8)
- (6) Write down the character table for S_4 , with proper justifications. (10)
- (7) Let G be a non-abelian group of order 21.
 - (a) Determine the degrees of the irreducible representations of G
 - (b) How many irreducible representations G has of each degree (up to equivalence)?
 - (b) Determine the number of conjugacy classes of G.
- (8) (a) Define Specht representation S^{λ} of the symmetric group S_n corresponding to the partition λ of n.

(b) Prove that the Specht representation corresponding to the partition $\lambda = (n - 1, 1)$ of n is the standard representation of S_n .

(6+4)

(4+4+2)

(15)
